首页> 外文OA文献 >A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis
【2h】

A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis

机译:嗜热古生菌球菌医院中的二羧酸/ 4-羟基丁酸酯自养碳同化循环

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ignicoccus hospitalis is an anaerobic, autotrophic, hyperthermophilic Archaeum that serves as a host for the symbiotic/parasitic Archaeum Nanoarchaeum equitans. It uses a yet unsolved autotrophic CO2 fixation pathway that starts from acetyl-CoA (CoA), which is reductively carboxylated to pyruvate. Pyruvate is converted to phosphoenol-pyruvate (PEP), from which glucogenesis as well as oxaloacetate formation branch off. Here, we present the complete metabolic cycle by which the primary CO2 acceptor molecule acetyl-CoA is regenerated. Oxaloacetate is reduced to succinyl-CoA by an incomplete reductive citric acid cycle lacking 2-oxoglutarate dehydrogenase or synthase. Succinyl-CoA is reduced to 4-hydroxybutyrate, which is then activated to the CoA thioester. By using the radical enzyme 4-hydroxybutyryl-CoA dehydratase, 4-hydroxybutyryl-CoA is dehydrated to crotonyl-CoA. Finally, β-oxidation of crotonyl-CoA leads to two molecules of acetyl-CoA. Thus, the cyclic pathway forms an extra molecule of acetyl-CoA, with pyruvate synthase and PEP carboxylase as the carboxylating enzymes. The proposal is based on in vitro transformation of 4-hydroxybutyrate, detection of all enzyme activities, and in vivo-labeling experiments using [1-14C]4-hydroxybutyrate, [1,4-13C2], [U-13C4]succinate, or [1-13C]pyruvate as tracers. The pathway is termed the dicarboxylate/4-hydroxybutyrate cycle. It combines anaerobic metabolic modules to a straightforward and efficient CO2 fixation mechanism.
机译:Ignicoccus hospitalis是一种厌氧,自养,超嗜热古生菌,可作为共生/寄生性古生菌纳米古菌的宿主。它使用尚未解决的自养型CO2固定途径,该途径从乙酰CoA(CoA)开始,该CoA被还原性羧化为丙酮酸。丙酮酸转化为磷酸烯醇丙酮酸(PEP),从中糖异生以及草酰乙酸形成分支。在这里,我们介绍了完整的代谢循环,通过该循环可以再生主要的CO2受体分子乙酰辅酶A。草酰乙酸通过缺乏2-氧戊二酸脱氢酶或合酶的不完全还原柠檬酸循环而还原为琥珀酰-CoA。琥珀酰-CoA还原为4-羟基丁酸酯,然后将其活化为CoA硫酯。通过使用自由基酶4-羟基丁酰基-CoA脱水酶,将4-羟基丁酰基-CoA脱水成巴豆酰基-CoA。最后,巴豆酰辅酶A的β-氧化导致两个分子的乙酰辅酶A。因此,循环途径形成了丙酮酸辅酶A的额外分子,丙酮酸合酶和PEP羧化酶为羧化酶。该提案基于4-羟基丁酸酯的体外转化,所有酶活性的检测以及使用[1-14C] 4-羟基丁酸酯,[1,4-13C2],[U-13C4]琥珀酸酯的体内标记实验,或[1-13C]丙酮酸作为示踪剂。该途径称为二羧酸/ 4-羟基丁酸酯循环。它结合了厌氧代谢模块,成为一种简单有效的二氧化碳固定机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号